The " Maximal " Tensor Product of Operator Spaces
نویسنده
چکیده
In analogy with the maximal tensor product of C *-algebras, we define the " maximal " tensor product E 1 ⊗ µ E 2 of two operator spaces E 1 and E 2 and we show that it can be identified completely isometrically with the sum of the two Haagerup tensor
منابع مشابه
Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کاملThe \ maximal " tensor product of operator
In analogy with the maximal tensor product of C-algebras, we deene the \maximal" tensor product E 1 E 2 of two operator spaces E 1 and E 2 and we show that it can be identiied completely isometrically with the sum of the two Haagerup tensor We also study the extension to more than two factors.
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملStructures on the Way from Classical to Quantum Spaces and Their Tensor Products
We study tensor products of two structures situated, in a sense, between normed spaces and (abstract) operator spaces. We call them Lambert and proto-Lambert spaces and pay more attention to the latter ones. The considered two tensor products lead to essentially different norms in the respective spaces. Moreover, the proto-Lambert tensor product is especially nice for spaces with the maximal pr...
متن کاملBEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES
We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...
متن کامل